

Agrupamento de Escolas Figueira Mar

Código 161366 - Contribuinte n.º 600 074 978

ENSINO PROFISSIONAL - ÉPOCA ESPECIAL DE RECUPERAÇÃO DE MÓDULOS Informação - prova de Física e Química - Módulo F1 - Forças e movimentos

MODALIDADE DA PROVA: ESCRITA - DURAÇÃO DA PROVA: 90 MINUTOS

CRITÉRIOS DE CLASSIFICAÇÃO:

O aluno deve respeitar sempre a instrução relativa à apresentação de todos os cálculos efetuados, assim como apresentar todas as justificações e/ou conclusões eventualmente solicitadas.

Um erro de transcrição implica uma desvalorização de 1 ponto na classificação a atribuir à resposta onde esse tipo de erro

A ausência ou utilização incorreta de unidades será penalizada com 2 pontos.

MATERIAL PERMITIDO:

O aluno apenas pode usar, como material de escrita, caneta ou esferográfica de tinta indelével, azul ou preta.

As respostas são registadas em folha própria, fornecida pela escola.

O aluno deve ser portador de material de desenho e de medida (lápis, borracha e régua graduada) e de calculadora científica.

Não é permitido o uso de corretor.

CONTEÚDOS	OBJETIVOS
	• Identificar a Física como a ciência que busca conhecer as leis da Natureza, através do estudo do comportamento dos corpos sob a ação das forças que neles atuam.
	Reconhecer que os corpos exercem forças uns nos outros.
	Compreender que dois corpos A e B estão em interação se o estado de movimento ou de repouso de um depende da existência do outro.
	 Verificar que a descrição do movimento unidimensional de um corpo exige apenas um eixo de referência orientado com uma origem.
lakaya a a a	• Identificar, neste tipo de movimento, a posição em cada instante com o valor, positivo, nulo ou negativo, da coordenada da posição no eixo de referência.
Interações fundamentais	• Calcular deslocamentos entre dois instantes t1 e t2 através da diferença das suas coordenadas de posição.
	Concluir que o valor do deslocamento, para qualquer movimento unidimensional, pode ser positivo ou negativo.
Movimento unidimensional com	• Distinguir, utilizando situações reais, entre o conceito de deslocamento entre dois instantes e o conceito de espaço percorrido no mesmo intervalo de tempo.
velocidade constante	• Compreender que a posição em função do tempo, no movimento unidimensional, pode ser representada num sistema de dois eixos, correspondendo o das ordenadas à coordenada de
Movimento unidimensional com aceleração constante	posição e o das abcissas aos instantes de tempo.
	• Interpretar o significado físico do valor da velocidade média que pode ser positivo ou negativo.
	 Compreender que, num movimento unidimensional, a velocidade instantânea é uma grandeza igual à velocidade média calculada para qualquer intervalo de tempo se a velocidade média for constante.
	Concluir que o sentido do movimento, num determinado instante, é o da velocidade
	instantânea nesse mesmo instante.
	• Reconhecer que a velocidade é uma grandeza vetorial que, apenas no movimento unidirecional pode ser expressa por um valor algébrico seguido da respetiva unidade.
	2.2. Movimento uniforme
	Aplicar as equações do movimento com velocidade constante ou aceleração constante
	• Identificar a força como responsável pela variação da velocidade de um corpo.
	Compreender que um corpo permanecerá em repouso ou em movimento unidimensional

- (retilíneo) com velocidade constante enquanto for nula a resultante das forças que sobre ele atuam (Lei da Inércia).
- Aplicar a Lei da Inércia a diferentes situações, conhecidas do aluno, e interpretá-las com base nela
- Compreender que a aceleração instantânea é uma grandeza igual à aceleração média calculada para qualquer intervalo de tempo se, num movimento unidimensional, a aceleração média for constante.
- Verificar que a representação gráfica da velocidade em função do tempo para o movimento unidimensional com aceleração constante tem como resultado uma reta.
- Reconhecer que a aceleração é uma grandeza vetorial que, apenas no movimento unidirecional pode ser expressa por um valor algébrico seguido da respetiva unidade.
- Verificar que a aceleração adquirida por um corpo é diretamente proporcional à resultante das forças que sobre ele atuam e inversamente proporcional à sua massa (Lei fundamental da Dinâmica).
- Compreender que a direção e o sentido da aceleração coincidem sempre com a direção e o sentido da resultante das forças.
- Aplicar a Lei fundamental da Dinâmica e a Lei das interações recíprocas às seguintes situações:.
- Interpretar a origem da força de atrito com base na rugosidade das superfícies em contacto.
- Compreender os conceitos de coeficiente de atrito
- Verificar que o módulo da força de atrito estático entre um corpo e o plano sobre o qual se é o módulo da força exercida pelo plano no corpo.
- Compreender a relação que traduz a definição do módulo da força de atrito cinético entre um corpo e o plano sobre o qual se encontra, aplicando-a a situações do dia-a-dia.
- Aplicar a Lei fundamental da Dinâmica e a Lei das interações recíprocas às seguintes situações em que existe atrito entre os materiais das superfícies em contacto:
- Um corpo assente numa superfície horizontal, atuado por forças constantes cuja direção pode ser paralela à superfície.
- Reconhecer que a força de atrito depende da força normal entre as superfícies

DATA://	A representante de grupo disciplinar:

