

Agrupamento de Escolas Figueira Mar

Código 161366 - Contribuinte n.º 600 074 978

ENSINO PROFISSIONAL - ÉPOCA ESPECIAL DE RECUPERAÇÃO DE MÓDULOS Informação - prova de Física e Química – Módulo F2 – Hidrostática e Hidrodinâmica

MODALIDADE DA PROVA: ESCRITA - DURAÇÃO DA PROVA: 90 MINUTOS

CRITÉRIOS DE CLASSIFICAÇÃO:

O aluno deve respeitar sempre a instrução relativa à apresentação de todos os cálculos efetuados, assim como apresentar todas as justificações e/ou conclusões eventualmente solicitadas.

Um erro de transcrição implica uma desvalorização de 1 ponto na classificação a atribuir à resposta onde esse tipo de erro ocorra.

A ausência ou utilização incorreta de unidades será penalizada com 2 pontos.

MATERIAL PERMITIDO:

O aluno apenas pode usar, como material de escrita, caneta ou esferográfica de tinta indelével, azul ou preta.

As respostas são registadas em folha própria, fornecida pela escola.

O aluno deve ser portador de material de desenho e de medida (lápis, borracha e régua graduada) e de calculadora científica.

Não é permitido o uso de corretor.

CONTEÚDOS	OBJETIVOS		
 Estática dos fluidos Os fluidos e sua classificação Comportamento de um gás ideal 	 Distinguir um fluido de um sólido. Caracterizar um fluido em termos de isotropia, mobilidade e viscosidade. Classificar os fluidos em gases e líquidos com base em: viscosidade, compressibilidade e forças de ligação entre as moléculas constituintes. Reconhecer que um líquido é um fluido incompressível, isto é, a sua massa volúmica é aproximadamente constante. Reconhecer que os gases são fluidos compressíveis. Descrever macroscopicamente o comportamento de um gás ideal em termos da teoria cinéticomolecular. Interpretar o comportamento de um gás ideal através da equação pV = nRT. Aplicar as leis de Boyle-Mariotte e Gay-Lussac. 		
Lei fundamental da hidrostática	 Caracterizar o equilíbrio hidrostático. Caracterizar a pressão num ponto do interior ou da superfície de um líquido em equilíbrio hidrostático. Aplicar a lei fundamental da hidrostática: pB - pA = rg(hB-hA). Compreender que, em consequência desta lei, num líquido em equilíbrio hidrostático: a pressão é a mesma em todos os pontos que estiverem à mesma profundidade a pressão num líquido aumenta com a profundidade a superfície livre é horizontal. Interpretar, com base nesta lei, o comportamento de um líquido num sistema de "vasos comunicantes Interpretar o equilíbrio de líquidos não miscíveis. Conhecer o princípio de funcionamento do barómetro de Torricelli (Experiência de Torricelli) Interpretar o conceito de pressão absoluta, pressão atmosférica e pressão instrumental. Relacionar algumas unidades correntes de pressão tais como: pascal, bar, atmosfera, mm Hg e torr. Relacionar a pressão num ponto no interior de um líquido de massa volúmica r à profundidade h com a pressão atmosférica patm: p = patm + □qh. 		

	 Interpretar o princípio de Pascal. Compreender que o princípio de Pascal é uma consequência direta da lei fundamental da hidrostática. Descrever algumas aplicações do princípio de Pascal, tais como a prensa hidráulica e o elevador hidráulico.
Princípio de Arquimedes	 Caracterizar a impulsão como a força resultante das forças de pressão que o fluido exerce sobre um corpo nele mergulhado. Relacionar o módulo da impulsão que se exerce sobre um corpo mergulhado num fluido com a massa volúmica do fluido e o volume de fluido deslocado pelo corpo: I = rgV. Estabelecer a condição de flutuação de um corpo num fluido, aplicando a lei fundamental da dinâmica.
Dinâmica dos fluidos	 Interpretar o débito de um líquido que se desloca num tubo como a quantidade de líquido (em massa ou em volume) que atravessa a secção reta do tubo por unidade de tempo. Identificar um líquido como um fluido incompressível, isto é, com massa volúmica constante. Compreender a importância das leis fundamentais da Mecânica no estudo dos líquidos. Reconhecer que o movimento de um líquido pode ser descrito através da definição do vetor velocidade do líquido em cada ponto. Definir regime estacionário como aquele em que o vetor velocidade do líquido em cada ponto é constante no tempo. Definir linha de corrente que passa num ponto como a trajetória de uma partícula do líquido que passa nesse ponto. Compreender que um conjunto de linhas de corrente pode formar um tubo de corrente Associar a cada ponto de um tubo de corrente estreito a área, A, da secção reta do tubo nesse ponto e o módulo da velocidade v do líquido nesse ponto. Reconhecer que as paredes de um tubo qualquer de corrente não podem ser atravessadas por líquido. Verificar que para fluidos incompressíveis, a relação entre débito-volume, V Q, a velocidade v e a área A é: Q_v = vA (equação da continuidade) Compreender que a equação da continuidade aplicada a fluidos incompressíveis (líquidos) num tubo de corrente implica que a velocidade aumenta quando a secção reta diminui. Compreender que as leis fundamentais da Mecânica (lei da conservação da massa, lei fundamental da dinâmica e lei da conservação da energia) se podem aplicar, com certas precauções, ao estudo dos fluidos ideais e incompressíveis. Aplicar r a expressão matemática da lei de Bernoulli por unidade de volume entre dois pontos. Compreender o significado do termo p₂ – p₁ como um trabalho por unidade de volume. Inferir que a equação de Bernoulli traduz uma lei de conservação da energia.

ηΔΤΔ∙ /	/ Δ	renresentante de gruno dis	cinlinar:

